Standard Costing - Materials
Standard Costing Framework – Made Easy
What is Standard Costing?
Standard costing is a technique used to assign expected (standard) costs to products and services. These are then compared with actual costs to determine variances, allowing management to control costs and evaluate performance.
⚙️ Core Components
- Standard Cost – Predetermined cost per unit under efficient conditions
- Actual Cost – Real cost incurred
- Variance – The difference between standard and actual costs
- Variance Analysis – Examining the cause of the variances
Types of Variances
Material Variances
- Material Price Variance (MPV)
- Material Usage Variance (MUV)
- Material Mix Variance
- Material Yield Variance
Labour Variances
- Labour Rate Variance
- Labour Efficiency Variance
- Idle Time Variance
- Labour Mix Variance
Overhead Variances
- Variable Overhead Expenditure & Efficiency
- Fixed Overhead Expenditure & Volume (split into capacity and efficiency)
Example: Material Variances
Scenario:
A company manufactures 2,000 units of product Z using materials A and B.
Standard Mix per 1,000 units:
- Material A: 600 kg @ £4/kg
- Material B: 400 kg @ £6/kg
- Total standard input per 1,000 units = 1,000 kg
For 2,000 units, the standard input = 2,000 kg
Expected cost:
- A: 1,200 kg × £4 = £4,800
- B: 800 kg × £6 = £4,800
- Total Standard Cost = £9,600
Actual Usage:
- A: 1,180 kg @ £4.30
- B: 900 kg @ £5.80
- Total Actual Input = 2,080 kg
- Total Actual Cost = (1,180 × 4.30) + (900 × 5.80) = £10,294
Step 1: Material Price Variance (MPV)
Formula:
(Standard Price − Actual Price) × Actual Quantity
- A: (4.00 − 4.30) × 1,180 = £(354) Adverse
- B: (6.00 − 5.80) × 900 = £180 Favourable
Total MPV = £(174) Adverse
Step 2: Material Usage Variance (MUV)
Formula:
(Standard Quantity − Actual Quantity) × Standard Price
Standard Quantity for 2,000 units:
- A: 1,200 kg
- B: 800 kg
Actual:
-
A: 1,180 kg
-
B: 900 kg
-
A: (1,200 − 1,180) × £4 = £80 Favourable
-
B: (800 − 900) × £6 = £(600) Adverse
Total MUV = £(520) Adverse
Step 3: Material Mix Variance
Total Actual Input = 2,080 kg
Standard mix: 60% A, 40% B
- A: 2,080 × 60% = 1,248 kg
- B: 2,080 × 40% = 832 kg
Formula:
(Revised Standard Quantity − Actual Quantity) × Standard Price
- A: (1,248 − 1,180) × £4 = £(272) Adverse
- B: (832 − 900) × £6 = £(408) Adverse
Total Mix Variance = £(680) Adverse
Step 4: Material Yield Variance
Formula:
(Standard Input − Actual Input) × Weighted Average Std Price
- Standard Input = 2,000 kg
- Actual Input = 2,080 kg
- Weighted Avg Price = (£4.80)
Yield Variance:
= (2,000 − 2,080) × £4.80 = £(384) Adverse
✅ Variance Summary:
Variance Type | Amount |
---|---|
Price Variance | £(174) A |
Usage Variance | £(520) A |
Mix Variance | £(680) A |
Yield Variance | £(384) A |
Total Material Variance | £(1,758) A |
ACCA Exam Tip
Break every standard costing question into clear steps:
- Identify the standard and actual usage
- Apply correct formulas
- Label variances as Favourable (F) or Adverse (A)
- Always explain your logic clearly in narrative-based questions